Tensor Robust Principal Component Analysis via Non-Convex Low Rank Approximation
نویسندگان
چکیده
منابع مشابه
Tensor principal component analysis via convex optimization
This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...
متن کاملSparse Principal Component Analysis via Regularized Low Rank Matrix Approximation
Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loading...
متن کاملRobust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization
Principal component analysis is a fundamental operation in computational data analysis, with myriad applications ranging from web search to bioinformatics to computer vision and image analysis. However, its performance and applicability in real scenarios are limited by a lack of robustness to outlying or corrupted observations. This paper considers the idealized “robust principal component anal...
متن کاملRobust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices by Convex Optimization
Principal component analysis is a fundamental operation in computational data analysis, with myriad applications ranging from web search to bioinformatics to computer vision and image analysis. However, its performance and applicability in real scenarios are limited by a lack of robustness to outlying or corrupted observations. This paper considers the idealized “robust principal component anal...
متن کاملInformed Non-convex Robust Principal Component Analysis with Features
We revisit the problem of robust principal component analysis with features acting as prior side information. To this aim, a novel, elegant, non-convex optimization approach is proposed to decompose a given observation matrix into a low-rank core and the corresponding sparse residual. Rigorous theoretical analysis of the proposed algorithm results in exact recovery guarantees with low computati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2019
ISSN: 2076-3417
DOI: 10.3390/app9071411